
3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 4/55

Supported functions
The following is information on the supported functions.

Date/Time functions
To use a date/time function, the value must be stored as a datetime data type. Datetime data types can be identified
by the datetime data type () icon in the header row. If the value is not stored as a datetime data type, convert the
value to a datetime data type using the DATEVALUE function. See the DATEVALUE () section of this article.

DDATEATE

Takes three separate arguments and combines them to form a date in a new DateTime column.

Syntax: DATE(YEAR, MONTH, DATE)

YEAR is four-digit value
MONTH is two-digit value
DATE is two-digit value

Example: DATEADD(@year@, @month@, @day@)

Notes on use: Leading zeros for MONTH and DATE are not supported, for example:
DATE(1999,05,08) should be expressed as DATE(1999,5,8)

DDATEADDATEADD

Calculates the date that is so many days, weeks, months from a given date.

Syntax: DATEADD(DATETIME, INCREMENT, INTERVAL)

DATETIME is the date you want to start with.
INCREMENT is the number you provide to be added to the to the DATETIME.
INTERVAL is the interval (minutes, days, years, etc.) to add by.
The following is a list of the recognized values for INTERVAL:

Years
Months
Weeks
Days
Hours
Minutes
Seconds
Millis

http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 5/55

Example: DATEADD(@Date Received@, 6, "months")

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object. The INCREMENT provided
must be an integer. Millis accepts a maximum of +/- 2147483647.

DDATEDIFFATEDIFF

Calculates the days, weeks, months between two dates.

Syntax: DATEDIFF(DATETIME_1, DATETIME_2, INTERVAL)

DATETIME_1 is the date you want to start with.
DATETIME_2 is the date you want to end with.
INTERVAL is the interval type (minutes, days, years, etc.) you want returned.
The following is a list of the recognized values for the INTERVAL value:

Years
Months
Weeks
Days
Hours
Minutes
Seconds
Millis

Example: DATEDIFF(@Date Received@, @Date Shipped@, “months”)

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 6/55

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object. The INCREMENT provided
must be an integer. Millis accepts a maximum of +/- 2147483647.

It is recommended you use the latest datetime value for the DATETIME_2. If you enter
the earliest date as the DATETIME_2 value, the DATEDIFF function will return a negative
number.

DATEDIFF always rounds the result down to the nearest whole number. For example, if
the difference between two dates is 3 years and 11 months, the DATEDIFF function
returns the difference as 3 years.

DDATEFORMATATEFORMAT

Converts a value stored as a datetime data type to a text sting in a given format.

Syntax: DATEFORMAT(DATETIME, FORMAT)

DATETIME is the date you want to convert.
FORMAT is format you want the DATETIME converted to.

Example: DATEFORMAT(@Date Received@, “dd-MMM-yyyy HH:mm”)

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

See the Date and Time Syntax article for more information on the syntax to use for the
DATE_STRING.

DDATETRUNCATETRUNC

Removes the unwanted detail of a timestamp and rounds it to the interval you want. This provides the
same output as the SQL DATE_TRUNC() function. Use case: you want to explore trends in your Community
user signups and you need to aggregate signup event data by the time each event occurred. You’re only
interested in signups by year, month, or day but not the hour, minute, and millisecond. Use DateTrunc to
remove the portion of the timestamp that you don't need.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 7/55

Syntax: DATETRUNC(x) where x can be any one of the following arguments.

minutes
month
weeks
days
hours
seconds

Example: DATETRUNC(@DATE@, "months")

DDATEVALUEATEVALUE

Converts a datetime text string to a datetime object so you can use it for calculations.

Syntax: DATEVALUE(DATETIME, FORMAT, TIME_ZONE)

DATETIME is the datetime as a text string.
FORMAT is format of the DATETIME.
TIME_ZONE is the time zone you want associated with the datetime object.

Example: DATEVALUE(@Date@, "yyyy-MMM-dd hh:mm a", "GMT-05:00")

Notes on use: See the Date and Time Syntax article for more information on the syntax to use for
FORMAT and TIME_ZONE.

Use the DATEVALUE function to convert a text column into a date column, or a date that you type
into a date object. With the resulting data object, you can use Paxata date functions, for example
return the number of days or years between two dates (see next example below for Date

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 8/55

Manipulation).
Date objects can store a date, time, or a combination of date and time.

To convert text to a Paxata date object, review specify its format in Paxata date format syntax.
Repeated characters indicate the length of the field, such as yyyy means a 4-digit year. For column
"DateCol" with input text that specifies February 28, 2012 as:
2012/28/02

Convert to date object:
DATEVALUE(@DateCol@, "yyyy/dd/MM")

The date format must match your input data.

If February 28, 2012 looks like:
2012-15-02

Use date format:
"yyyy-dd-MM"

If February 28, 2012 looks like:
2-28-12

Use date format:
"dd-MM-yy"

If the time 1:29 pm looks like:
13:29

Use time format:
"HH:mm"

If the time 1:29 pm looks like:
01:29PM

Use time format:
"hh:mmaa"

Advanced example: if the input text is a date and time, separated by the letter T, then a time zone:
2012-02-28T09:29:00-05:00

For letter characters that literally appear in input text, surround the letter with single straight
quotes. Use the following date format:
"yyyy-MM-dd'T'HH:mm:ssZZ"

Date manipulation
Use the DATEDIFF function to calculate differences in date-time values between two Paxata date
objects. Calculate days between August 1, 1998 and a date column:
 DATEDIFF(DATEVALUE("01-AUG-1998" ,
"dd-MMM-yyyy"), @MyDate@ , "days")

DDAYAY

Extracts the day from a date.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 9/55

Syntax: DAY(DATETIME)

DATETIME is the date you want to extract the day from.

Example: DAY(@Date@)

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

Returned values range from 1 to 31.

DDAYOFWEEKAYOFWEEK

Returns the day of the week from a date.

Syntax: DAYOFWEEK(DATETIME)

DATETIME is the date you want to evaluate.

Example: DAYOFWEEK(@Date@)

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

Returned values range from 1 (Monday) to 7 (Sunday).

DDAYOFYEARAYOFYEAR

Returns the day of the year from a date.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 10/55

Syntax: DAYOFYEAR(DATETIME)

DATETIME is the date you want to evaluate.

Example: DAYOFYEAR(@Date@)

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

Returned values range 1 to 365 (366 on a leap year).

EENDOFMONTHNDOFMONTH

Returns the datetime for the last day of the month in a new DateTime column. This provides the same
output as Excel's EOMONTH function.

Syntax: ENDOFMONTH(DATE_TIME)

DATE_TIME is a DateTime object.

Example: ENDOFMONTH(@Date@)

FFROMUNIXTIMEROMUNIXTIME

Returns a date-time object from a Unix timestamp. This provides the same output as the MySQL
FROM_UNIXTIME() function.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 11/55

Syntax: FROMUNIXTIME(MILLISECONDS)

MILLISECONDS is the int value represented as milliseconds

Example: FROMUNIXTIMESTAMP(@UNIX TIME STAMP@)

HHOUROUR

Extracts the hour from a time.

Syntax: HOUR(DATETIME)

DATETIME is the time you want to extract the hour from.

Example: HOUR(@Date@)

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

Returned values range from 0 (12:00 am) to 23 (11:00 pm).

MMAXDATEAXDATE

Compares two or more dates and returns the latest date in the comparison.

Syntax: MAXDATE(DATETIME_1, [DATETIME_2, ...])

DATETIME_1 is the first date.
DATETIME_2, ... [optional] are the additional dates.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 12/55

Example: MAXDATE(@Target Ship Date@ ,@Date Shipped@)

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

Here's how the MAXDATE function will respond to some common scenarios:

If only one date is provided, the provided date is returned.
The time zone of all the dates are temporarily converted to the same time zone to
determine the latest date. The conversion is neither a permanent nor a visual
transformation.
Cells with text strings are ignored.
Blank cells are ignored.
Cells with errors are ignored.
If no datetime objects are found, a blank cell is returned.

MMIDNIGHTIDNIGHT

Resets the given time to midnight (00:00).

Syntax: MIDNIGHT(DATETIME)

DATETIME is the time you want to reset.

Example: MIDNIGHT(@Date@)

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

The time zone isn't affected.

MMINDATEINDATE

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 13/55

Compares two or more dates and returns the earliest date in the comparison.

Syntax: MINDATE(DATETIME_1, [DATETIME_2, ...])

DATETIME_1 is the first date.
DATETIME_2, ... [optional] are the additional dates.

Example: MINDATE(@Target Ship Date@ ,@Date Shipped@)

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

Here's how the MINDATE function will respond to some common scenarios:

If only one date is provided, the provided date is returned.
The time zone of all the dates are temporarily converted to the same time zone to
determine the latest date. The conversion is neither a permanent nor a visual
transformation.
Cells with text strings are ignored.
Blank cells are ignored.
Cells with errors are ignored.
If no datetime objects are found, a blank cell is returned.

MMINUTEINUTE

Extracts the minute from a time.

Syntax: MINUTE(DATETIME)

DATETIME is the time you want to extract the minute from.

Example: MINUTE(@Date@)

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 14/55

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

Returned values range from 0 to 59.

MMONTHONTH

Extracts the month from a date.

Syntax: MONTH(DATETIME)

DATETIME is the date you want to extract the month from.

Example: MONTH(@Date@)

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

Returned values range from 1 (January) to 12 (December).

NNETWORKDAYSETWORKDAYS

Returns the number of working days between two date-time objects. This provides the same output as
Excel's NETWORKDAYS function.

Syntax: NETWORKDAYS(DATE_TIME_START, DATE_TIME_END)

DATE_TIME_START is a date-time object for start date.
DATE_TIME is a date-time object for end date.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 15/55

Example: NETWORKDAYS(@DATE@, DATE(2019,1,12))

NNOWOW

Returns the current date and time.

Syntax: NOW(TIME_ZONE) returns the current date and time.

TIME_ZONE, optional, sets the time zone.

Example: NOW("GMT-03:00")

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

If a time zone is not specified in the function, the returned datetime object will default to
Greenwich Mean Time (GMT). See the Date and Time Syntax article for a list of time
zones and their appropriate syntax.

QQUARTERUARTER

Returns the quarter as an integer from a given date-time object.

Syntax: QUARTER(DDATE_TIME)

DATE_TIME is a date-time object.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 16/55

Example: QUARTER(@DATE@)

SSECONDECOND

Extracts the seconds from a time.

Syntax: SECOND(DATETIME)

DATETIME is the time you want to extract the seconds from.

Example: SECOND(@Date@)

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

Returned values range from 0 to 59.

SSETTIMEZONEETTIMEZONE

Changes the time zone of a time to the time zone you specify.

Syntax: SETTIMEZONE(DATETIME, TIME_ZONE)

DATETIME is the time you want to set the time zone of.
TIME_ZONE is the time zone you want associated with the datetime object.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 17/55

Example: SETTIMEZONE(@Date Received@, "GMT-3:00")

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

The transformation doesn't change the time, it simply assigns a new time zone to the
existing time. See the Date and Time Syntax article for a list of time zones and their
appropriate syntax.

TTODAYODAY

Returns the current date, doesn't include the time.

Syntax: TODAY()

Example: TODAY()

WWEEKOFYEAREEKOFYEAR

Returns the week number as an integer from a given date-time object. This provides the same
output as Excel's WEEKNUM function.

Syntax: WEEKOFYEAR(DATE_TIME)

DATE_TIME is a date-time object.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 18/55

Example: WEEKOFYEAR<@DATE@>

WWORKDAYORKDAY

Returns a number that represents a date that is the indicated number of working days before or
after a date (the starting date). Working days exclude weekends and any dates identified as
holidays. This provides the same output as Excel's WORKDAY function. Use WORKDAY to exclude
weekends or holidays when you calculate invoice due dates, expected delivery times, or the
number of days of work performed.

Syntax: WORKDAY(STARTDATE, DAYS)

STARTDATE is a date that represents the start date.
DAYS is the number of nonweekend and nonholiday days before or after start
date. A positive value for days yields a future date; a negative value yields a past
date.

Example: WORKDAY(@DATE@ ,12)

YYEAREAR

Extracts the year from a date.

Syntax: YEAR(DATETIME)

DATETIME is the date you want to extract the year from.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 19/55

Example: Year()

Notes on use: The DATETIME you provide must be a datetime object, a column that contains a
datetime object, or a function that returns a datetime object.

Back to contents ()

Informational functions

FFIRSTNONBLANKIRSTNONBLANK

Compares the values of two or more columns and returns the first non-blank value. This function
provides the same output as Excel's FIRSTNONBLANK function.

Syntax: FIRSTNONBLANK(ARGUMENT_1, [ARGUMENT_2, ...])

ARGUMENT_1 is the first column.
ARGUMENT_2, ... [optional] are the additional columns.

Example: FIRSTNONBLANK(@Current Employer@, @Previous Employer@, @School@)

Notes on use: If only one column is specified, the value of the provided column is returned.

If no non-blank values are found, the FIRSTNONBLANK function will return an empty cell
(unless you include a final argument for what value to display in the output when no
non-blank values are found).

IISBLANKSBLANK

Checks for blank or null values within a specified column. If a blank or null value is found, the value TRUE
is returned.

http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 20/55

Syntax: ISBLANK(ARGUMENT)

ARGUMENT is the column to check.

Example: ISBLANK(@Column@)

IISDATESDATE

Checks for date-time values within a specified column. If a date-time value is found, the value TRUE is
returned.

Syntax: ISDATE(ARGUMENT)

ARGUMENT is the column to check.

Example: ISDATE(@Column@)

Notes on use: The values must be datetime objects, not datetime text strings. Datasets imported from
an Excel spreadsheet will automatically import dates as datetime objects. Dates from all
other sources need to be converted to a datetime object using the DATEVALUE function.
See the DATEVALUE () section of this article.

IISNULLSNULL

Checks for blanks or null values within a specified column. If a blank or null value is found, the value TRUE
is returned.

http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 21/55

Syntax: ISNULL(ARGUMENT)

ARGUMENT is the column to check.

Example: ISNULL(@Column@)

IISNUMBERSNUMBER

Checks for numeric values within a specified column. If a numeric value is found, the value TRUE is
returned.

Syntax: ISNUMBER(ARGUMENT)

ARGUMENT is the column to check.

Example: ISNUMBER(@Column@)

IISTEXTSTEXT

Checks for text within a specified column. If a blank or null is found, the value TRUE is returned.

Syntax: ISTEXT(ARGUMENT)

ARGUMENT is the column to check.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 22/55

Example: ISTEXT(@Column@)

Back to contents ()

Logical functions

AANDND

Evaluates whether all arguments within an expression evaluate to TRUE. If the arguments do evaluate to
TRUE, the value TRUE is returned.

Syntax: AND(ARGUMENT_1, [ARGUMENT_2, ...])

ARGUMENT_1 is the argument to evaluate.
ARGUMENT_2, ... [optional] are the additional arguments.

Example: AND(@Column_A@, @Column_B@, @Column_C@)

Notes on use: The ARGUMENTs you provide must be either a TRUE or FALSE value, a column that
contains either value, or a function that returns either value.

The AND function is case insensitive, so it treats True, TRUE, true the same way.
Similarly, False, FALSE, false are treated the same.

IIFF

Allows you to specify a different output depending on whether or not a given statement is true.

http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 23/55

Syntax: IF(CONDITION, TRUE_VALUE, FALSE_VALUE)

CONDITION is the expression you want to evaluate.
TRUE_VALUE is the value the function returns if the CONDITION is true.
FALSE_VALUE is the value that is returned if the CONDITION is not true.

Example: IF(@Current Employer@ = 0, "N/A", @Current Employer@)

Notes on use: The IF function is ideal in cases where a set of values need to be created based on
information in one or more other columns

The CONDITION must provide either a TRUE or FALSE value. Other functions can be
incorporated as part of the CONDITION. Another IF function can be used as one or both
of the values. This allows for very fine-grained control over the returned value. In most
cases, the CONDITION will include an operator, see the Comparison operators () section
of this article.

IIFERRORFERROR

Checks the cell values for errors within a specified column. If an error is found, a value you specify is
returned.

Syntax: IFERROR(ARGUMENT, VALUE)

ARGUMENT is the column you want to check.
VALUE is the value to return if the column cell contains an error.

http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 24/55

Example: IFERROR(@New Column@, "N/A")

Notes on use: The VALUEs you provide can be a text string or numeric value, a column that contains a
text string or numeric value, or a function that returns a text string or numeric value.

For cells where no error is found, the cells original value is returned.

NNOTOT

Reverses the result of an expression that results in a TRUE or FALSE value.

Syntax: NOT(ARGUMENT)

ARGUMENT is the TRUE or FALSE value you want to reverse.

Example: NOT(@Column@)

Notes on use: The ARGUMENT you provide must be either a TRUE or FALSE value, a column that
contains either value, or a function that returns either value.

The NOT function is case insensitive, so it treats True, TRUE, true the same way. Similarly,
False, FALSE, false are treated the same.

OORR

Determines if at least one value within an expression is TRUE. If one value is TRUE, the value TRUE is
returned.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 25/55

Syntax: OR(ARGUMENT_1, [ARGUMENT_2, ...])

ARGUMENT_1 is the first argument you want to evaluate.
ARGUMENT_2, ... [optional] are the additional columns.

Example: OR(@Column_A@, @Column_B@, @Column_C@)

Notes on use: The ARGUMENTs you provide must be either a TRUE or FALSE value, a column that
contains either value, or a function that returns either value.

The OR function is case insensitive, so it treats True, TRUE, true the same way. Similarly,
False, FALSE, false are treated the same.

Back to contents ()

Mathematical functions
To use a math function, the value must be stored as a numeric data type. Numeric data types can be identified
by the numeric data type () icon in the header row. If the value is not stored as a numeric data type, convert
the value to numeric format using the VALUE function. See the VALUE () section of this article.

In addition to the mathematical functions listed in this section, the following standard mathematical operations
are supported:

Multiply, divide a column by any number.
Add to, subtract from a column by any number
Examples using column name "Revenue"
@Revenue@ * 100
@Revenue@ / 100
@Revenue@ + 100
@Revenue@ - 100

AABSBS

Returns the absolute value (ABS) of a real number.

In mathematical notation, absolute values is indicated with a bar on either side. For example, the
absolute value of x would be written as |x|.

http://localhost:8080/
http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 26/55

Syntax: ABS(VALUE)

VALUE is the value you want to find the absolute value of.

Example: ABS(@Column@)

Notes on use: The VALUE you provide must be a real number, a column that contains a real number,
or a function that returns a real number.

ABS can be thought of as the distance from zero a given number has on a number line.
For ABS, positive and negative do not matter. The number's distance from zero is the
same, or absolute, regardless of whether the number is to the right of zero (positive) or
to the left of zero (negative). In mathematical notation, absolute values is indicated with
a bar on either side. For example, the absolute value of x would be written as |x|.

CCEILINGEILING

Returns a given number rounded up to whole number.

Syntax: CEILING(VALUE)

VALUE is the value you want to round.

Example: CEILING(@Column A value@)

EEXPXP

Returns the exponential for the specified value.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 27/55

Syntax: EXP(NUMBER)

NUMBER is any real number.

Example: EXP(@Column A value@)

FFACTORIALACTORIAL

Returns the product of an integer and all the integers below it.

Syntax: FACTORIAL(NUMBER)

NUMBER is any real number.

Example: FACTORIAL(@Column A value@)

FFLOORLOOR

Returns a given number rounded down to whole number.

Syntax: FLOOR(VALUE)

VALUE is the value you want to round.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 28/55

Example: FLOOR(@Column A value@)

IINTNT

Rounds a real number down to the next integer that is less than or equal to it.

Syntax: INT(VALUE)

VALUE is the real number you want to round down.

Example: INT(@Column@)

Notes on use: The VALUE you provide must be a real number, a column that contains a real number,
or a function that returns a real number.

LLNN

Returns the natural logarithm of a number. Natural logarithms are based on the constant e
(2.71828182845904). This provides same output as Excel's LN function.

Syntax: LN(NUMBER)

NUMBER is positive real number for which you want the natural logarithm.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 29/55

Example: LN(@Column A value@)

LLOGOG

Returns the logarithm of a number to the base you specify. This function provides the same output as
Excel's Log function.

Syntax: LOG(NUMBER,BASE)

NUMBER is positive real number for which you want the natural logarithm.

BASE is the base of the logarithm.

Example: LOG(@Column A value@,2)

LLOG10OG10

Returns the base-10 logarithm of a number. This function provides the same output as Excel's Log10
function.

Syntax: LOG10(NUMBER)

NUMBER is positive real number for which you want the natural logarithm.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 30/55

Example: LOG10(@Column A value@)

MMODOD

Returns the remainder after number is divided by divisor. The result has the same sign as divisor. This
provides same output as Excel's MOD function.

Syntax: MOD(MUMBER,DIVISOR)

NUMBER is any real number.
DIVISOR is any real number.

Example: MOD(@Column A value@,3)

PPOWEROWER

A Math/Trigonometric function that computes and returns the result of a number raised to a power.
This function provides the same output as Excel's POWER function.

Syntax: POWER(NUMBER, POWER)

NUMBER is the base number that is any real number.

POWER is the exponent, any real number, to which the base number is raised.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 31/55

Example: POWER(@Column A value@,3)

RROUNDOUND

Rounds a number to the number of decimal places you specify.

Syntax: ROUND(VALUE, PLACES)

VALUE is the real number you want to round.
PLACES is the number of decimal places to round to.

Example: ROUND(@Column@, 2)

Notes on use: The VALUE you provide must be a real number, a column that contains a real number,
or a function that returns a real number.

The PLACES value must be a positive integer (not negative or a contain decimal).
VALUEs with less decimal places than what you specified won't be effected by the
ROUND function.

RROUNDDOWNOUNDDOWN

Rounds a number down to the number of decimal places you specify.

Syntax: ROUNDDOWN(VALUE, PLACES)

VALUE is the real number you want to round down.
PLACES is the number of decimal places to round down to.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 32/55

Example: ROUNDDOWN(@Column@, 3)

Notes on use: ROUNDDOWN is similar to ROUND except that it always rounds down.

The VALUE you provide must be a real number, a column that contains a real number,
or a function that returns a real number.

The PLACES value must be a positive integer (not negative or contain a decimal).
VALUEs with less decimal places than what you specified won't be effected by the
ROUNDDOWN function. If zero decimal places are specified, ROUNDDOWN operates
like the INT function.

RROUNDPERCOUNDPERC

Rounds a real percentage value (between -100 and 100) to the number of decimal places you specify,
ensuring that values near 0% and ±100% have at least the number of decimal places you specify and as
many, but no more, decimal places to distinguish the value from true 0% or ±100% values.

Syntax: ROUNDPERC(VALUE, PLACES)

VALUE is the real percentage value you want to round.
PLACES is the minimum number of decimal places to round to.

Example: ROUNDPERC(@Column@, 2)

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 33/55

Notes on use: The VALUE you provide must be a real percentage value between -100 and 100, a
column that contains a real percentage value, or a function that returns a real
percentage value.

The PLACES value must be an integer (no decimals). VALUEs with less decimal places
than what you specified won't be effected by the ROUNDPERC function.

RROUNDUPOUNDUP

Rounds a number up to the number of decimal places you specify.

Syntax: ROUNDUP(VALUE, PLACES)

VALUE is the real number you want to round up.
PLACES is the number of decimal places to round up to.

Example: ROUNDUP(@Column@, 3)

Notes on use: ROUNDUP is similar to ROUND except that it always rounds up.

The VALUE you provide must be a real number, a column that contains a real number,
or a function that returns a real number.

The PLACES value must be a positive integer (not negative or a contain
decimal).VALUEs with less decimal places than what you specified won't be effected by
the ROUNDUP function.

SSIGNIGN

Determines the sign of a number. Returns 1 if the number is positive, zero (0) if the number is 0,
and -1 if the number is negative. This provides same output as Excel's SIGN function.

Syntax: SIGN(NUMBER)

NUMBER is any real number.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 34/55

Example: SIGN(@Column A value@)

SSQRTQRT

Returns a positive square root. This function provides the same output as Excel's SQRT function.

Syntax: SQRT(NUMBER)

NUMBER is any positive number for which you want to calculate the square root.

Example: SQRT(@Column A value@)

SSUMUM

Adds the given numeric values together.

Syntax: SUM(VALUE_1, [VALUE_2, ...])

VALUE_1 is the first value.
VALUE_2, ... [optional] are the additional values.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 35/55

Example: SUM(@Column_A@, @Column_B@, @Column_C@)

Notes on use: The VALUE you provide must be a numeric value, a column that contains numeric
values, or a function that returns a numeric value.

Back to contents ()

Statistical functions
To use a math function, the value must be stored as a numeric data type. Numeric data types can be
identified by the numeric data type () icon in the header row. If the value is not stored as a numeric
data type, convert the value to numeric format using the VALUE function. See the VALUE () section of this
article.

AAVERAGEVERAGE

Calculates the value equal to the sum of a list of numbers divided by the number of items in the list.

Syntax: AVERAGE(VALUE_1, [VALUE_2, ...])

VALUE_1 is the first value.
VALUE_2, ... [optional] are the additional values.

Example: AVERAGE(@Column_A@, @Column_B@, @Column_C@)

Notes on use: The VALUE you provide must be a numeric value, a column that contains numeric
values, or a function that returns a numeric value.

MMAXAX

Returns the greatest (maximum) value from a set of values.

http://localhost:8080/
http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 36/55

Syntax: MAX(VALUE_1, [VALUE_2, ...])

VALUE_1 is the first value.
VALUE_2, ... [optional] are the additional values.

Example: MAX(@Column_A@, @Column_B@, @Column_C@)

Notes on use: The VALUE you provide must be a numeric value, a column that contains numeric
values, or a function that returns a numeric value.

MMEDIANEDIAN

Returns the number that exists in the middle of a range of numbers ordered from lowest to highest
value.

Syntax: MEDIAN(VALUE_1, [VALUE_2, ...])

VALUE_1 is the first value.
VALUE_2, ... [optional] are the additional values.

Example: MEDIAN(@colum_A@, @colum_B@, @colum_C@, @colum_C@, @colum_E@)

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 37/55

Notes on use: The VALUE you provide must be a numeric value, a column that contains numeric
values, or a function that returns a numeric value.

In a range with an even set of numbers, the median is the center number, half the
numbers are to the right of the value returned and half of the numbers are to the left
of the value returned. Where there is no single number in the middle of the range),
MEDIAN calculates the average on the two numbers on either side of the mid-point.

Note that MEDIAN is different than AVERAGE. AVERAGE is an arithmetic mean—
calculated by adding up a set of numbers and then dividing by the number of values in
the set. MEDIAN simply takes the value at the center of the range. In those number
ranges that exhibit a balance in the distribution of values within the collection, the
MEDIAN and AVERAGE calculations may coincide; in skewed distributions, the values
will be different.

MMININ

Returns the smallest (minimum) value from a set of values.

Syntax: MIN(VALUE_1, [VALUE_2, ...])

VALUE_1 is the first value.
VALUE_2, ... [optional] are the additional values.

Example: MIN(@Column_A@, @Column_B@, @Column_C@)

Notes on use: The VALUE you provide must be a numeric value, a column that contains numeric
values, or a function that returns a numeric value.

MMODEODE

Returns the value that occurs most frequently in a set of numbers.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 38/55

Syntax: MODE(VALUE_1, VALUE_2, [VALUE_3, ...])

VALUE_1 is the first value.
VALUE_2 is the second value.
VALUE_3, ... [optional] are the additional values.

Example: MODE(@Column_A@, @Column_B@, @Column_C@)

Notes on use: The VALUE you provide must be a numeric value, a column that contains numeric
values, or a function that returns a numeric value.

If multiple numbers have an equal occurrence count greater than one, the value
returned is the number (of those that are equal in frequency) that appears first in the
set (reading from left to right). If no number appears more than once, the function
returns an error.

The most common problem related to MODE is when the provided set of numbers has
no duplicates. At least one number must appear two or more times for the function to
successfully evaluate. If the minimum number of arguments (two) are used, then each
argument must evaluate to the same number or an error will occur. As you might
expect, larger sets of numbers with a more limited variation will reduce the chance of
MODE returning an error.

SSTDEVTDEV

Estimates the standard deviation, how much variation from the average, that exists within a sample set
of data.

Syntax: STDEV(VALUE_1, [VALUE_2, ...])

VALUE_1 is the first value.
VALUE_2, ... [optional] are the additional values.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 39/55

Example: STDEV(@Column_A@, @Column_B@, @Column_C@)

Notes on use: The VALUE you provide must be a numeric value, a column that contains numeric
values, or a function that returns a numeric value.

The standard deviation for data is the square root of its variance. If the set under
analysis represents all data points (referred to as a population), use STDEVP instead.

SSTDEVPTDEVP

Estimates the standard deviation, how much variation from the average, that exists within the entire set
(population) of data.

Syntax: STDEVP(VALUE_1, [VALUE_2, ...])

VALUE_1 is the first value.
VALUE_2, ... [optional] are the additional values.

Example: STDEVP(@Column_A@, @Column_B@, @Column_C@)

Notes on use: The VALUE you provide must be a numeric value, a column that contains numeric
values, or a function that returns a numeric value.

If the set under analysis represents only a sample of the data points, use STDEV
instead.

VVARAR

Estimates how much dispersion exists (how much the values are spread out) within a samples set of
data.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 40/55

Syntax: VAR(VALUE_1, [VALUE_2, ...])

VALUE_1 is the first value.
VALUE_2, ... [optional] are the additional values.

Example: VAR(@Column_A@, @Column_B@, @Column_C@)

Notes on use: The VALUE you provide must be a numeric value, a column that contains numeric
values, or a function that returns a numeric value.

If the set under analysis represents all data points (referred to as a population), use
VARP instead.

VVARPARP

Estimates how much dispersion exists (how much the values are spread out) within the entire set
(population) of data.

Syntax: VARP(VALUE_1, [VALUE_2, ...])

VALUE_1 is the first value.
VALUE_2, ... [optional] are the additional values.

Example: VARP(@Column_A@, @Column_B@, @Column_C@)

Notes on use: The VALUE you provide must be a numeric value, a column that contains numeric
values, or a function that returns a numeric value.

If the set under analysis represents only a sample of data points, use VAR instead.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 41/55

Back to contents ()

Text functions

CCHARHAR

Returns the character for the specified ASCII value.

Syntax: CHAR(INT)

INT is the ASCII value for the character to return.

Example: CHAR(ASCII)

CCONCATENATEONCATENATE

Use the + operator to combine text. To combine two columns with a hyphen between them:
@Last@ +"-" + @First@ Combines a series of text strings into a single text string.

Or use the CONCATENATE function:
CONCATENATE(@Last@ , "-" , @First@)

Syntax: CONCATENATE(STRING_1, [STRING_2, ...])

STRING_1 is the first value.
STRING_2, ... [optional] are the additional strings.

Example: CONCATENATE(@Applicant Last@ ,", ",@Applicant First@ , " of ",@City@)

Notes on use: The STRING you provide can be a text string or numeric value, a column that contains a
text string or numeric value, or a function that returns a text string or numeric value.

FFINDIND

Returns the numeric position of a text string that is found within another text string.

http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 42/55

Syntax: FIND(STRING_1, STRING_2, [VALUE])

STRING_1 is the string you want to find.
STRING_2 is the string you want to search in.
VALUE, optional, is the numeric position in STRING_2 you want to start your
search.

Example: FIND("Tech",@School@)

Notes on use: The STRING you provide must be a text string, a column that contains a text string, or
a function that returns a text string. Likewise, the VALUE must be a numeric value, a
column that contains a numeric value, or a function that returns a numeric value.

If STRING_1 occurs multiple times in STRING_2, FIND only indicates the position of the
first match — not any successive matches in the pair.

The FIND function is case sensitive, so it treats True, TRUE, true separately.

HHASHVALUEASHVALUE

Transforms a text string to make fuzzy matching easier.

Syntax: HASHVALUE(STRING, OPTION, [VALUE])

STRING is the string you want to transform.
OPTION is the algorithm to use for the transformation. Available options are:

METAPHONE
NGRAM
FINGERPRINT

VALUE, used with NGRAM, specifies the number of ngrams to use.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 43/55

Example: HASHVALUE(@Current Employer@, "metaphone")

Notes on use: The STRING you provide must be a text string, a column that contains text strings, or a
function that returns a text string. Both OPTION and VALUE are treated as strings and
must be surrounded by quotation marks, i.e. "metaphone" .

HASHVALUE uses algorithms to generate hashes based on provided string values. The
algorithms used are also used by the Cluster + Edit column operation to find close
matches between values within a column. See the Cluster + Edit article for more
information on METAPHONE, NGRAM, and FINGERPRINT.

LLEFTEFT

Returns a given number of characters starting from the left-most (beginning) position of a text string.

Syntax: LEFT(STRING, VALUE)

STRING is the string you want to search.
VALUE is how many characters to return. The default is 1.

Example: LEFT(@School@,4)

Notes on use: The STRING you provide must be a text string, a column that contains text strings, or a
function that returns a text string.

LLENEN

Counts the number of characters in a text string.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 44/55

Syntax: LEN(STRING)

STRING is the text string you want to evaluate.

Example: LEN(@School@)

Notes on use: The STRING you provide must be a text string, a column that contains text strings, or a
function that returns a text string.

LLOWEROWER

Converts text in column to all lowercase. Optional argument: locale.

Syntax: LOWER(STRING, LOCALE)

STRING is the string or column that you want to convert to lowercase.
LOCALE is the locale, which may need to be specified in order to output required
characters for the lowercase.
Refer to https://www.oracle.com/technetwork/java/javase/java8locales-
2095355.html (https://www.oracle.com/technetwork/java/javase/java8locales-
2095355.html) for the supported locale values.

Example: LOWER(@Values@, "tr")

MMIDID

Returns a given number of characters from the middle of a text sting.

https://www.oracle.com/technetwork/java/javase/java8locales-2095355.html

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 45/55

Syntax: MID(STRING, VALUE_1, VALUE_2)

STRING is the text string you want to evaluate.
VALUE_1 is the start position.
VALUE_2 is the number of characters to return.

Example: MID(@School@,4, 5)

Notes on use: The STRING you provide must be a text string, a column that contains text strings, or a
function that returns a text string. The VALUEs provided must be a numeric value, a
column that contains numeric values, or a function that returns a numeric value.

PPADLEFTADLEFT

Pads a string with a specified character, for the specified number of times. This provides same
output as MySQL LPAD.

Syntax: PADLEFT(STRING, NUMBER, VALUE)

STRING or column is the value to pad.
NUMBER is the number of times to replace with the VALUE.
VALUE is the literal replacement value.

Example: PADLEFT(@set@, 10, "-")

PPADRIGHTADRIGHT

Pads a string with a specified character, for the specified number of times. This provides same
output as MySQL LPAD and RPAD.

Syntax: PADRIGHT(STRING, NUMBER, VALUE)

STRING or column is the value to pad.
NUMBER is the number of times to replace with the VALUE.
VALUE is the literal replacement value.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 46/55

Example: PADRIGHT(@set@, 10, "-")

RREGEXPEGEXP

Executes a search and replace on a text string using regular expression (regex). Note this function is
based on Java Regex.

Syntax: REGEXP(STRING_1, STRING_2, STRING_3)

STRING_1 is the text string you want to search.

STRING_2 is the text you are searching for.

STRING_3 is the text you want to replace STRING_2.

Example: REGEXP(@School@," ", "_")

Notes on search and replace
The REGEXP function takes 3 arguments: a text column or expression, a regular expression
(https://en.wikipedia.org/wiki/Regular_expression) to search for, and a value to replace for found items.
STRING_1 must be a text string, a column that contains text strings, or a function that returns a text
string. STRING_2 and STRING_3 are composed of character combinations that define the search and
replace activity.

Warning: In regular expressions, there are 12 characters with special meanings:
\ ^ $. | ? * + () [and open curly brace.
If you want to search for those actual characters and not their special meanings, add a double backslash
(not a single backslash) before it. For example, to search for asterisk characters with a regular
expression, type "*" not "*". To search for a backslash character with a regular expression, type four
backslash characters.

For more guidance on Regex pattern matching, refer to
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

https://en.wikipedia.org/wiki/Regular_expression
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 47/55

(https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html)

Examples

To replace text ABC with DEF:
REGEXP(@ProductID@ , "ABC", "DEF")

To convert space character to hyphen:
REGEXP(@ProductID@ , " ", "-")

To convert asterisk (special character) to hyphen:
REGEXP(@ProductID@ , "*", "-")

To convert a backlash (special character) to hyphen:
REGEXP(@ProductID@ , "\\\\", "-")

Supported Extract and Replace patterns:
RegexpExtract("replace me", "e m") should be "e m"
RegexpExtract("replace me", "e.?m") should be "e m"
RegexpExtract("replace me", "r.*c") should be "replac"
RegexpExtract("123123456789", "(123)+456(.*)") should be "123123456789"
RegexpExtract("123123456789", "(123)+456(.*)", 0) should be "123123456789"
RegexpExtract("123123456789", "(123)+456(.*)", 1) should be "123"
RegexpExtract("123123456789", "(123)+456(.*)", 2) should be "789"
RegexpExtract("456789", "(123)*456(.*)", 2) should be "789"

RegexpReplace("replace me", "e m", "---") should be "replac---e"
RegexpReplace("replace me", "e.?m", "---") should be "replac---e"
RegexpReplace("replace me", "r.*c", "--") should be "--e me"
RegexpReplace("123123456789", "(123)+456(.*)", "---") should be "---"
RegexpReplace("123123456789", "abc", "---") should be "123123456789"

RREPEATEPEAT

Repeats a specified string N number of times.

Syntax: REPEAT(VALUE,REPEAT)

VALUE is the string or column to locate and repeat.
REPEAT is the number of times to repeat the VALUE.

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 48/55

Example: REPEAT(@set4@, 3)

RREPLACEEPLACE

Replaces part of a text string, based on the number of characters you specify, with a different text string.

Syntax: REPLACE(VALUE, START NUM,NUM CHARS, NEW VALUE)

VALUE is the text or the column in which you want to replace characters
START NUM is the start position of the character in the VALUE that you want to
replace
NUM CHARS is the number of characters in the text that you want to replace
with the new string
NEW VALUE is the replacement value. Note this is case-sensitive.

Example: REPLACE(@timestamp@,10,5," ")

Notes on use: Use REPLACE when you want to replace any text that occurs in a specific location in a
text string; use SUBSTITUTE () when you want to replace specific text in a text string.
Example: REPLACE(@Hospital Name@, Search(@Hospital Name@,"ADVOCATE"), 8,
"ALPHA")

RREVERSEEVERSE

Reverses the specified string.

Syntax: REVERSE(STRING)

STRING is the column's value or string to reverse.

http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 49/55

Example: REVERSE(@set4@)

RRIGHTIGHT

Returns a give number of characters starting from the right-most (end) position of a text string.

Syntax: RIGHT(STRING, VALUE)

STRING is the string to search.
VALUE is how many characters to return. The default is 1.

Example: RIGHT(@School@,4)

Notes on use: The STRING you provide must be a text string, a column that contains text strings, or a
function that returns a text string.

SSEARCHEARCH

Searches for a specified string and returns the index of the string. If not found, returns value of
-1 .

Syntax: SEARCH(VALUE, STRING)

VALUE is the text or the column in which you want to substitute characters
STRING is the string to search.

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 50/55

Example: SEARCH(@Hospital Name@, "ADVENTIST")

Notes on
use:

SEARCH can be combined with REPLACE ().
Example: REPLACE(@Hospital Name@, Search(@Hospital Name@,"ADVOCATE"), 8,
"ALPHA")

SSTRTR

Converts the data in the argument into a text string.

Syntax: STR(VALUE)

VALUE is the value you want to convert to a text string.

Example: STR(@Date@)

Notes on use: The Value you provide must be a numeric value, a column that contains a numeric
value, or a function that returns a numeric value.

This is useful for converting a numeric value into text or for ensuring that a column of
mixed text and number values is treated entirely as a column of text so that other text
functions can successfully be executed against it.

SSUBSTITUEUBSTITUE

Substitutes new text for old text in a text string.

http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 51/55

Syntax: SUBSTITUTE(VALUE, OLD TEXT, NEW TEXT)

VALUE is the text or the column in which you want to substitute characters
OLD TEXT is the text you want to replace. Note this is case-sensitive
NEW TEXT is the text you want to use to replace OLD TEXT. Note this is case-
sensitive

Example: SUBSTITUTE(@Hospital Name@ ,"CREIGHTON","Merton")

Notes on use: Use SUBSTITUTE when you want to replace specific text in a text string; use REPLACE ()
when you want to replace any text that occurs in a specific location in a text string.

TTRIMRIM

Removes all leading and trailing spaces for the specified string.
Important note: the TRIM function was designed to trim the 7-bit ASCII space character (value 32)
from text. In the Unicode character set, there is an additional space character called the
nonbreaking space character that has a decimal value of 160. This character is commonly used in
Web pages as the HTML entity, . By itself, the TRIM function does not remove this
nonbreaking space character.

Syntax: TRIM(STRING)

STRING is the value you want to you want trimmed. Note: column can be specified as
the STRING value.

Example: TRIM(@Company@)

TTRIMLEFTRIMLEFT

Returns the string stripped of whitespace from the left end of the string.

http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 52/55

Syntax: TRIMLEFT(STRING)

STRING is the column's values you want to you want trimmed.

Example: TRIMLEFT(@Company@)

TTRIMRIGHTRIMRIGHT

Returns the string stripped of whitespace from the right end of the string.

Syntax: TRIMRIGHT(STRING)

STRING is the column's values you want to you want trimmed.

Example: TRIMRIGHT(@Company@)

UUPPERPPER

Converts text in column to all uppercase. Optional argument: locale

Syntax: UPPER(STRING,LOCALE)

STRING is the string or column that you want to convert to uppercase.
LOCALE is the locale, which may need to be specified in order to output required
characters for the uppercase.
Refer to https://www.oracle.com/technetwork/java/javase/java8locales-
2095355.html (https://www.oracle.com/technetwork/java/javase/java8locales-
2095355.html) for the supported locale values.

https://www.oracle.com/technetwork/java/javase/java8locales-2095355.html

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 53/55

Example: UPPER(@Values@, "tr")

VVALUEALUE

Converts numbers stored as a string value into a numeric value.

Syntax: VALUE(STRING)

STRING is the numbers, stored as a text string, you want to convert to a numeric value.

Example: VALUE(@COLUMN@)

Notes on use: The STRING you provide must be a number stored as text string, a column that
contains a number stored as text string, or a function that returns a number stored as
text string.

If STRING contains characters other than numbers, the functions returns an error. A
single period (decimal point) is allowed within the argument in order to create a real
number.

This is useful for converting a text value into numbers to ensure that a column of
number values is treated as a column of numbers so that number based functions can
successfully be executed against it.

Back to contents ()

Comparison operators

http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 54/55

Comparison operators are used to test logical conditions. They are most commonly used within the first
argument of the IF function in order to generate a TRUE or False value.

Operators
The following is information on the operators:

OOperatorperator DDefinitionefinition EExample that return truexample that return true

= Equal to 1 + 2 = 3

> Greater than 3 > 2

>=

Greater than or equal to

11 >= 10

11 >= 11

< Less than 2 < 3

<=

Less than or equal to

10 <= 11

10 <= 10

<> Not equal to 2 <> 3

"if" statements
The IF function takes 3 arguments: a condition that returns true or false, an expression to return if true,
and an expression to return if false:
IF (@Age@ < 18, "Minor", "Adult")

Use with numeric values
Using comparison operators to conduct comparisons between numeric values is straightforward. Bear in
mind, however, that the two values to be compared must both be of the same data type. The text value
“3” is not the same as the numeric value 3.
To safeguard against mixing data types, use the VALUE function to convert numbers stored as text to numeric
value. For example, "3" = 3 would evaluate to FALSE, but VALUE("3") = 3 would evaluate to TRUE. See the VALUE ()
section of this article.

Use with text values
The most commonly used comparison operator with text is = (equals). It is used to determine if two text
strings are the same. Note that like other string functions that perform matching (such as FIND), it is case
sensitive. In other words, it treats “The” as a different string than “the”. For the comparison to be true, the
two pieces of text must match EXACTLY—including capitalization. Use of <> (not equal to) follows the
same pattern as use of the = (equals). It is also case sensitive when examining text strings.
It may be surprising to note that even comparisons that include < (less than) and > (greater than)—including <=
(less than or equals to) and >= (greater than or equals to)—can be used on text values. Without going into detail,
characters are represented by a numeric value. Since no two characters are the same, no two characters share
the same numeric value.

http://localhost:8080/

3/1/2019 Paxata

http://localhost:8080/#/kb?key=ComputedColsTool.ComputedColsTool 55/55

Predicting the behavior of text comparisons requires some additional information about how printable
characters are encoded by computers.

Back to contents ()

http://localhost:8080/

